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ABSTRACT 
 

We have build CovVise, a new open source coverage system 
(http://www.veripool.org/covvise).  Verifiers can write coverage statements in SystemC we 

extended with SystemVerilog-ish coverage statements, and designers can write one-line 
coverage statements that expand to SystemVerilog coverage statements. Data is collected on 

both passing and failing tests to aid spotting interesting trends. We connected this to a 
memory database that scales above 10 billion inserts a day, and a web front-end for 

visualizing the results. 
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1. Introduction 
 
At SiCortex, our last project had a fairly traditional coverage methodology, and we were left 
wanting more for our successor project.  
 
Our previous project had a fairly typical coverage methodology; we waited until near the end of 
the project to add coverage.  We then added simple counters to our SystemC testbenches to 
collect items of interest (“bins”), and summed together all hits on each bin across all passing 
tests.  This data then was saved in a simple file-based database. 
 
Each verification person then wrote a custom Perl script to extract his device-under-test’s data as 
an HTML document.  The process worked, but was fairly tedious, and required an ugly 
connection between multiple languages all exposed to the users: coverage statements in Verilog, 
SystemC, internals in C++, and reporting scripts in Perl and HTML. 
 
In parallel and completely independent from the above scheme we used the commercial 
simulator coverage system for expression coverage. 
 
This year we demolished most of what we had, and revised the traditional assumptions.  We 
decided to collect data on failing tests, and separate out low-hit-tests (more about this later.) 
 
To enter the coverage bins, we kept SystemVerilog for RTL coverage, but added to the SystemC 
language an extension to support SystemVerilog-like crosses and bins. 
 
Next came the database.  We planned to execute more than 10 billion coverage inserts a day, so 
we came up with a fully distributed Memcached-MySQL solution that uses parallel servers to 
both allow high insert rates, and medium term storage.  The data collected is still fairly large 
(>10 GB per day), so we also automatically prune the data and archive to slower per-month 
databases. 
 
Finally, the coverage viewing user interface was implemented as a web 2.0 application (using 
AJAX1).  This allows users to interactively traverse a hierarchy of coverage bins, making it easy 
to see the coverage tables of interest.  The presentation makes it easy to see what crosses still 
have holes, and a single click identifies which tests are the best candidates to run for covering 
those bins. 
 
This process enables us to see the coverage holes, and close on what random stimulus 
improvements were required much sooner than in our previous project. 
 
                                                 
1 AJAX stands for Asynchronous JavaScript And XML.  AJAX is the web programming 
technique first popularized by Google Maps to implement what looks like a normal non-web 
application in the browser; users can click on items in their browser and have them updated by 
the server without loading a whole new page. 
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2. Tradition Dictates... 
 
• Coverage is added by verification team members 
• Coverage is added near the end of the verification effort 
• Coverage is collected only on passing tests 
• Coverage “hit count sums” are all created equal 
 
Before starting CovVise, we looked at how we were doing coverage, and what assumptions we 
would like to revisit. 
 
The first tradition is that verification team members add all the coverage.  Yes, designers have 
line coverage to worry about, but our verification team traditionally generated and analyzed the 
line coverage reports.  Instead, we wanted a process whereby the designers would be encouraged 
to insert coverage statements and view reports.   The designers needed an easy coverage 
language, and the designers had to be able to easily see the data – as an HTML report that was 
generated automatically on every test run.  We will cover the SystemVerilog cover statements 
and process in Chapter 4. 
 
The second tradition is that coverage is added near the end of the verification effort, when it’s 
believed verification is almost complete, and it’s just a matter of adding coverage to detect holes.  
Instead, we tried to learn from “test driven development” which suggests the tests for code 
precedes the source code itself.  (Coverage being the “test” of the verification code.)  Knowing 
what buckets were easily getting covered, or were huge holes, helped direct the verification 
effort; next time we probably would have started coverage even earlier.  For example, what was 
thought in the verification plan to be a rare case requiring a focused test turned out based on the 
coverage data to be releatively easily generated psudo-randomly, thus we knew apriori we didn’t 
need to write the focused test. Another reason to start early is that design and verification 
engineers often have passing thoughts of "we should remember to cover these cases or these 
conditions," and such thoughts are easy to implement now but are hard to remember later (or are 
forgotten altogether). 
 
The third tradition is that coverage is collected only on passing tests, indeed, the authors could 
find no suggestions that there was any other way to do it.  Why is this?  Obviously only passing 
tests should contribute to the coverage metrics, however consider a coverage bin with a “0” in it 
– IE no passing tests have ever hit it.  It may be illegal, something not yet in being stimulated, or 
something waived from testing.  What if you additionally know that a failing test is hitting it?  It 
may still be illegal, but you’re certainly going to do a lot more investigations before waiving it!  
Furthermore, by making a list of all failing tests and grading them on the number of bins that 
they hit that no passing test also hits, you can obtain a quick estimate of what tests are most 
valuable to work on to reach the coverage goals.  
 
The final tradition is that all coverage bin “hit counts” are equal.  Not equal in the weight sense2 
but equal in what a count of “20” hits summed across all tests means.   Unfortunately, there’s a 
                                                 
2  As for weighting, bins should probably be weighted such that large cross-product tables in 
total have similar weights to small tables.  Otherwise a cross with 10,000 bins will swap your 
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difference between twenty tests each causing an event once, and one test causing an event 20 
times.  While both sum to 20 hits, the former may easily be triggered by a test initialization step, 
but 20 in one test most likely indicates a test hits that bin fairly well.3  Thus, CovVise creates 
splits covered bins into “ok,” “low,” and “zero”.  “Ok” indicates a single test hit that bin more 
than 10 (programmable-per-bin) times, while “low” indicates no test hit that bin more than that 
number of times.  Again as another example, the summed count could be 50,000 but still 
considered “low” coverage, because every test in a large regression of 50,000 tests hit that bin 
just once.  We see that a lot on control registers, indicating there’s no test that toggles the CSR a 
few times, indicating we’re probably missing the focused read-write test for that CSR. 

3. SystemC extensions for Coverage 
 
SystemVerilog provides a fairly good syntax for specifying coverpoints, bins, and crosses. But 
most of our verification code used SystemC, which does not have coverage conveniently built 
into the language. 
 
We decided to created extensions to SystemC to provide a similar set of features as available in 
SystemVerilog, and added this to the SystemPerl pre-processor, which already sat on top of our 
SystemC simulator. 
 
Much like in SystemVerilog, the user specifies one or more covergroups inside a SystemC 
module. Each covergroup contains one or more coverpoints, all of which are sampled at the same 
time. Each coverpoint is associated with a single variable, and the values of the variable are 
sampled into a number of bins, which can be specified in a number of ways: 
 
SC_MODULE(myModule) { // A SystemC Module 
  ... 
  SP_COVERGROUP myGroup (   // Define the covergroup 
    coverpoint myCoverPoint{ 
      bins seven = 7;              // a single value 
      bins three_to_five = [3:5];  // a bin for a range 
      bins many[] = {6,9,[21:25]}; // seven bins 
    }; 
  ); 
  ... 
  void process() {  // a method of the class 
    ... 
    if (sampling_signal) {         // when to sample 
       SP_COVER_SAMPLE(myGroup);   // bins incremented here 
    }... 
  }; 
}; 
                                                                                                                                                             
coverage metrics, which seems wrong as that large table probably isn’t a lot more important in 
aggregate than 10 well thought out single bins.  SystemPerl/CovVise implements this 
automatically. 
3  Assuming a count of greater than one indicates the test has escaped initialization only works 
if there’s only one initialization sequence per test.  Generally we don’t put subtests each with 
their own initialization into a single test run, for ease of debug and triage. 
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Multidimensional crosses can also be specified from up to 8 different coverpoints in a given 
covergroup (more than 3 or 4 tends to get unwieldy): 
 
SC_MODULE(myModule) {  // A SystemC Module 
  ... 
  SP_COVERGROUP myGroup ( 
    coverpoint first { 
      bins seven = 7;              // a single value 
      bins three_to_five = [3:5];  // a bin for a range 
      bins many[] = {6,9,[21:25]}; // three explicit bins 
    }; 
    coverpoint second[8] = [0:7];  // 8 bins, 0 through 7 
    cross myCross { 
      rows = {first}; 
      cols = {second}; 
    }; 
  ); 
  ... 
}; 
 
Once we had this basic level of functionality, we quickly discovered that there were many 
instances of a common pattern, a coverpoint with one bin corresponding to each value of an 
enumerated type. So, we added a shortcut for SystemPerl automatic enumerated types: 
 
SC_MODULE(myModule) {  // A SystemC Module 
  CmdType command;  // a SystemPerl AUTOENUM 
 
  SP_COVERGROUP Cbox_cmd ( 
    coverpoint command { 
      auto_enum_bins = CmdType; 
    }; 
  ); 
}; 
 
Another common pattern, especially with crosses, is that certain combinations of values are 
unreachable and should be ignored or assert an error. In either case, the generated HTML table 
shows grey boxes without numbers, indicating that this combination should never be hit. We 
added a mechanism to specify these procedurally: 
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SC_MODULE(myModule) {  // A SystemC Module 
  CmdType command;  // a SystemPerl AUTOENUM 
 
  SP_COVERGROUP mygroup ( 
    ... 
    cross myCross { 
      rows = {first}; 
      cols = {second}; 
      illegal_bins_func = myCross_illegal() 
      ignore_bins_func = myCross_ignore() 
    }; 
  ); 
  ... 
  // function returns true if the argument pair is illegal 
  // and should cause test failure 
  bool myCross_illegal(uint64_t first, uint64_t second); 
 
  // function returns true if the argument pair should 
  // be ignored, but should not cause test failure 
  bool myCross_ignore(uint64_t first, uint64_t second); 
}; 
 
We also added functions to waive certain bins, this is used to indicate a particular bin isn’t 
impossible, but need not be completely tested before tapeout.  This information is fed to the 
database, and a little “W” appears when coverage has been waived, so the user knows there’s 
something to look at post-tapeout. 
 

4. SystemVerilog extensions for RTL Coverage 
 
• Designers should add coverage just as they add assertions 
• Simple preprocessing allows coverage inside normal RTL always blocks 
 
We believe some coverage belongs in the RTL in the same way that some assertions belong in 
the RTL.  For example, a low level RTL detail that makes the coincidence of two rare conditions 
interesting is something the RTL designer would add coverage for, preferably when writing that 
RTL code.  However, functional coverage of a specified major cross-block interface remains the 
domain of the verifier. 
 
At the start of the current project we viewed RTL designer coverage points as an extension of 
line coverage – something the designer adds, but not something added to the test plan.  Over the 
course of this project we learned that many coverage points written in the verification plan were 
already or better implemented in the RTL, or vice versa.  As time goes on we are learning which 
coverage is easier where, and hope to better decide who implements which coverage point, and 
also update the testplans based on coverage ideas the RTL designer added to cover low level 
RTL details.  
 
The catch with RTL coverage was when inserting such coverage points our designers found 
SystemVerilog coverage and assertion statements to be quite unwieldy.  Coverage statements do 
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not fit in well into standard “always block” code, and thus often require half a dozen extra lines 
of code to accomplish what should take one line. Alas, as it has often been noted, the 
SystemVerilog coverage and assertion syntaxes simply seem like "a different language" when 
compared to the RTL modelling constructs. 
 
Thus to assist RTL modellers we added several language features.  These were implemented in 
the VPPreproc preprocessor that is a component of the Verilog-Perl package. VPPreproc reads in 
the RTL code containing macros and writes out standard SystemVerilog code with the macros 
expanded into assertion and coverage statements.  The elegance of this approach is it works with 
all SystemVerilog simulators and formal tools. 
 
The first construct we added was to collect a coverpoint at the current control-flow point in an 
always statement. This is used in an always blocks as follows: 
 
   always @* begin 
     ... 
     if (...) begin 
       if (req & ack) begin 
          // Format: $ucover_clk(clock, label) 
          $ucover_clk(myclk, req_and_ack_label); 
          // other non-coverage statements. 
 
The preprocessor converts the $ucover_clk to a temporary signal and makes a clocked assertion 
at the specified edge, roughly as follows: 
 
   reg _tempsignal; 
   always @* begin 
     ... 
     _tempsignal = 0; 
     if (...) begin 
       if (req & ack) begin 
          _tempsignal = 1; 
     end 
   end 
 
   req_and_ack_label: cover property (@(posedge myclk) _tempsignal) 
 
Note the work this saves the designer; their other alternatives were to replicate the expression in 
the cover statement, or create the temporary signal.  Either approach is more effort, and error 
prone.  
 
The above approach proved valuable, so we added an extension for covering busses: 
 
   always @* begin 
      if (...) begin 
         // Format: $ucover_foreach_clk(clock, label, "msb:lsb", (...$ui...)) 
         $ucover_foreach_clk(myclk, "my_label", "27:3", (i[$ui])); 
 
This is requesting coverpoints for i[27], i[26]... i[3].  There's triple magic in this expansion.  The 
first magic is the same conversion to a temporary-signal discussed with $ucover_clk.  Second is 
the expansion of bit ranges "msb:lsb" to indicate a range from msb downto lsb inclusive. Finally 
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$ui is a magic variable replaced by the pre-processor with the loop index.  This expands to 
approximately: 
 
   reg [27:3] _tempsignal; 
   always @* begin 
      _tempsignal = 0; 
      if (...) begin 
         for (ui=27; ui>=3; ui=ui-1) begin 
           if (i[ui]) _tempsignal[temp-index] = 1; 
         end 
      end 
   end 
 
   my_label_27: cover property (@(posedge myclk) _tempsignal[27]) 
   my_label_26: cover property (@(posedge myclk) _tempsignal[26]) 
   ... 
   my_label_3:  cover property (@(posedge myclk) _tempsignal[3]) 
 
Coding this in pure SystemVerilog is not a one-line exercise. The one weakness with the current 
expansion however is that it creates N independent coverage points rather than a covergroup, but 
that's a fairly easy future improvement. 
 

5. The CovVise Database 
 
• Coverage databases are harder than you might think 
• Consider how to archive the data 
• Expect and support high insert rates 
 
We started off CovVise knowing that keeping up with storing the data would be hard, but scaling 
up was more difficult than expected.  The first problem was sheer magnitude of data.  On this 
project we had ~150,000 coverage bins, and ~50,000 tests per day, but we wanted the system to 
be architected to support another ten times that level. 
 
The first decision what data to keep.  Keeping a full matrix of the count (say 4 bytes4) of each 
bin for every test would require nearly 30GB of data per day, which while not impossible is 
difficult to search and wouldn’t scale up by 10x or more.  Thus we instead keep the best 4 
(programmable) tests that hit each bin, which is sufficient for test grading and to answer 
questions such as “what test is hitting this low-coverage bin” that our previous system could not 
answer.  We also allowed for collecting more data on “important” bins, and less on easy to hit 
bins, but did not need this feature in the end. 
 
                                                 
4 Many other coverage systems allow you to optionally choose a smaller number of bytes of 
count per bin, perhaps even only one bit.  This does reduce the data load, but doesn’t allow the 
user to see the relative hit rates between bins, which is important to determine when addresses or 
other distributions aren’t as uniform as expected. 
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The second decision was to allow for multiple database servers for collection, presentation, and 
archival.5  This was greatly simplified by using MD5 hashes of test names and coverage points 
instead of an integer database row key.  While hashes are longer, they have the nice property that 
you can lookup data in O(1) time.  They also allow data to be pushed or pulled from one 
database to another quickly, without needing to search or re-index the data. 
 
The third decision was how to deal with high insert rates; again, with 150,000 bins and 50,000 
tests, we need to do 8 billion updates per day, or nearly 100,000 per second, which would swamp 
most affordable database systems.  Thus we selected “Memcached”, which is basically a hash 
table distributed across multiple servers.  Using Memcached allowed the tests to push data into 
memory striped across N distributed servers, rather than needing to wait for a single database to 
insert data.  The database was then updated with the aggregate data only when an entire 
regression series completed.6 

6. The CovVise Web Interface 
 
• Users interface to CovVise data through the web 
• Data is presented as hierarchy of coverage “pages” 
• Coverage can be annotated onto source code listings 
• Hits can be tracked across tests, and across historical runs 
Users typically view CovVise data through an AJAX web interface.  This begins with the 
CovVise home page, which is a simple list of "ensembles."  Ensembles are our term for 
aggregations of coverage data. Most ensembles directly correspond to a "series" which is a 
collection of test runs created by a single script, such as a nightly regression. You can merge 
series together to reach coverage goals. 
                                                 
5 SiCortex ended up only needing a single MySQL database server with 32GB of memory for 
collection and presentation, and archived per-month databases on a second 16GB server.  We 
held ourselves to fit on this hardware by limiting ourselves to 150,000 coverage bins. 
6 The catch with Memcached is that a power failure will loose any coverage data collected since 
the last save.  Losing up to 12ish hours of coverage data wasn’t seen as a big deal, since we have 
only one unplanned power failure exceeding our UPS battery life every two-ish years. 
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Figure 1: CovVise Ensembles 

CovVise presents all coverage percentages as two numbers, for example “(71.1%) 58.0%.”  This 
indicates that including “low coverage bins,” those bins with < 10 hits per test as described 
previously, the coverage is 71.1%, while “ok coverage” which excludes those low coverage bins 
has a coverage of 58.0%.  “Fails” means all tests failed so the passing coverage is zero. These 
coverage numbers may also be annotated with two little icons. A “!” icon indicate a bin exists 
under this ensemble which was hit only in a failing test; the user may “follow” the “!”s down to 
find out the bins that failed. A “W” icon indicates some coverage was waived under this 
ensemble, and may be likewise followed. 

 

Ensemble Page Tree 

Clicking on one of the ensembles brings up the ensemble page.  This lists a series of coverage 
“pages”. These pages are hierarchical and may be either created by a program (line coverage) or 
by the user when defining coverage points. The browsing of the tree is dynamic AJAX HTML; 
clicking on a "+" contacts the database and updates the page in real time. 
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Figure 2: CovVise Ensemble Page Tree 

The page tree shows a coverage table. This two-dimensional table was created by a plugin that 
understands how to display the SystemPerl covergroup statements described above. 

Clicking on the "Source" link will bring you to the source code that created these bins; see the 
File Annotation example below. 

Not shown is a pop-up that appears when you hover over each bucket, showing the number of 
tests that hit the bin (or missed it) and the distribution of bucket hits. 
 

File Annotations 

Any file with coverage statements can be line-by-line annotated with the coverage inserted by 
that line, in this case a SystemPerl file. This started as a way to show line coverage, but proved a 
valuable debug tool for anyone writing coverage statements. 
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Figure 3: CovVise File Listing 

Figure 3 shows multiple coverage bins were recorded for a single line of the file. Clicking on the 
"show table" link would show the multi-dimensional table similar to the one shown in the Page 
Tree above. 

Bin-Run data 

Clicking on any coverage bin brings you to the bin-run page. This shows the results for one 
coverage bin as tested under one ensemble (the run). The number of hits on the bin is divided 
into six categories based on the pass/fail status and number of hits. A test that passes and gets 
over 10 (programmable) as described previously goes into the Hi Count category. A test that hits 
a few times (1-10) goes into the Low Count category. A test that does not hit the bin goes into 
the zero count category. 
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Figure 4: CovVise Bin Data 

 

Coverage Graphs and Metrigator 
We wanted to get graphs of the coverage data not just as filler for management meetings, but to 
help us identify trends.  Rather than integrate graphing directly into CovVise, we made a new 
tool, Metrigator, which accepted data from a plugin.  Metrigator was our common collection 
database for recording verification metrics and design metrics over time. This included: 



 

SNUG 2009 15 CovVise 

 
� CovVise coverage (percent low coverage, ok coverage, number of bins) 
� Headcount (total, by role) 
� Bug count (total, closed, per-component, by priority, etc) 
� Bug closure rate (total, per-component, by priority, etc) 
� Source code commits (size, number of edits) 
� Verification test success (number of tests, failures) 

 
Integrating this into a single tool makes it easy to spot correlations.  It also spared users from 
learning multiple graphing controls, and saved us effort from writing multiple graph interfaces. 
 
Below shows one graph of the SiCortex coverage percentage over time.  In this example there 
are four coverage percentages displayed. From the top line down to the bottom line these are: 
low coverage for a random regression and low coverage for the nightly regressions, followed by 
ok coverage for random and nightly (although sometimes the nightly regression gets better 
coverage so is sometimes above). Also note the overview of several months on the panel at the 
left, complemented by the zoom in on the right panel. 

 

 
Figure 5: Coverage Percentage Graph 

The trend towards coverage completion is obvious here, as is that at the time of writing we had a 
good ways to go to plateau and meet our coverage targets.  Note also how the low coverage is 
approaching the ok coverage; in addition to normal progress on better tests, this also represents 
an effort around the date of the graph to mark some large tables with lower coverage limits. 
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7. Futures 
 
• Additional coverage tools 
• Coverage crosses with time 
• Grand loop and automated test selection 
 
Although our project is not complete, CovVise was working well for us.  We however see some 
obvious areas for additional improvements.  First, coverage data isn’t yet integrated with the data 
from all of our commercial simulators, but we know how to write the plugins to do so. 
  
Second, we found that many verification engineers were spending lots of effort on specifying 
“timing window” sequence coverage to try to measure pipeline cases like “did we see an 
instruction consume the output of an older instruction each of 0,1,2,3,4,5,6 cycles ago?” This 
code tends to involve ad-hoc circular arrays to store previous values of a sampled structure, and 
there is a lot of commonality that could be abstracted away. We thus desire to add new 
declarative syntax to make it easier to specify coverage of timing windows, including crossing 
windowed coverpoints with other coverpoints. A single declaration should suffice to measure 
coverage of a complete bypass network. 
 
CovVise provides us with a database of coverage results, including lists of tests that are hitting 
new bins, and more importantly tests hitting “low” or “failed only” coverage bins.7  We 
occasionally run these reports and did minor tuning of our regressions, but the hope is to get to a 
fully automated system where every night’s runs would be tuned based on this data. 

8. Conclusions 
 
By throwing away an old coverage system, and revisiting some traditional assumptions, SiCortex 
was able to greatly improve our coverage techniques.  First, verification engineers could use 
powerful SystemC language extensions to specify their coverage measurements.  Second, by 
adding coverage earlier in the project, we could better track what work remained.  Third, by 
enlisting RTL designers to add coverage, we found interesting internal cases that were important 
to hit.  Fourth, by collecting data on failing tests we could see what bins were hittable if we were 
just to clear those failures.  Finally, by separating out “low-hits” we could tell what fields were 
randomized versus just set up at initialization time. 
 
This was implemented using a robust combination of SystemC and SystemVerilog for entering 
bins, plus advanced database techniques using MySQL and Memcached, all visible from a web 
browser. 
 
 
                                                 
7  Again, both “low” and “failed” bins are important because we know they aren’t impossible 
and haven’t been stressed much, so are well worth more machine time. 
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